

Renewable Materials in Ford Motor Company's Vehicles

Carsten Starke Vehicle Interior Technologies Group

Ford Research Center Aachen

Maira Magnani Advanced Materials & Processes Group Ford Research Center Aachen

Bio-Based Polymers Workshop October 12th, 2010 – Amsterdam, Netherlands

Content

- Ford Motor Company Research
- Ford Motor Company Sustainability Goals
- Renewable Materials
 - Current applications
 - On the pipeline technologies
- Conclusion

Ford Motor Company R&A Locations

RIC Dearborn

R&A at Ford Motor Company in Europe

- 1994 FFA founded
- Managing Directors:
 - Dr. Andreas Schamel
 - Prof. Dr. Pim van der Jagt
- R&A FoE: 250 employees, from 25 different nations

Our Major Future Challenges

Ford Motor Company's Goals

FMC Goal: Less CO₂-Emissions

until 2020 (Europe and USA)

Building Blocks of the CO₂ Reduction

Research & Advanced Engineering

Sind ONE FORD

Ford Vehicles with Alternative Fuels

Bivalente LPG vehicle

Flexifuelvehicles with **Bio-Ethanol**engine

Trivalente vehicles **Bio-Ethanol/LPG/Super**

ECOnetic **Diesel**vehicles

139 g/km

98 g/km 114→99 g/km Research & Advanced Engineering

CO2 Reduction by Using Renewable Materials

• PP-GF vs. PP-NF

Soy-based polyurethane foam

Renewable Materials: Examples of Current Vehicle Applications

Ford Vehicles with Biomaterials – Soy-Based Foam

Soy-Based Foam

- Use of soy polyol in formulating flexible polyurethane foam for seat cushion and seat back applications
- Soy content: 12% polyol replacement
- United Soybean Board support on development from 2004-2007

Photo by Lynn Betts, USDA Natural Resources Conservation Service.

Ford Vehicles with Biomaterials – Soy-Based Foam

Ford leader in technology and 1st OEM to launch it in production

- -Ford Expedition
- -Lincoln Navigator
- -Ford F-150
- -Ford Escape
- -Mercury Mariner
- -Ford Focus
- -Lincoln MKS

Ford Vehicles with Biomaterials – PP-NF (inj.)

PP-Wheat Straw: industry-first usage in quarter trim bins: Ford Flex, 2010

Research & Advanced Engineering

ONE FORD

Ford Vehicles with Biomaterials – PP-NF (inj.)

PP-Wheat Straw

- Use of agricultural fiber <u>co-products</u> for reinforcement of composites.
- Reduced density and reduced CO₂ emissions over glass and/or mineral reinforced composites

Ford Vehicles with Biomaterials – PP-NF

- PP-Natural Fibers (compression mold)
- Ford Mondeo (50PP-50Kenaf)
- Ford Focus
- Ford Fiesta

Renewable Materials: On the Pipeline Technologies

Sisal Reinforced PP (Injection Mold)

FMC Patent Material

- Good mechanical properties (high impact resistance)
- Good final appearance
- Social responsible material

Component test

- Crash test: PASSED!
 - Front impact, 40% overlap, 64km/h
 - Prototypes manufactured with series production tools (PP-EPDM)
 - Despite of different shrinkage ratio, PP-Sisal parts could be assembled without problems

Component test

- Head impact test: PASSED!
 - Impact points & angles as determined by homologation engineering

Production Tests

• 8h continuous production (Center Console)

PP-Sisal30 Production Process			
Advantages			
	PP-Sisal	PP-TD20	Dif. (%)
Weight (kg)	0.608	0.656	-7.32
Cycle Time (s)	53	59	-10.17

Temperature set up: PP-Sisal30: **140~170°C** PP-TD20: 180~210°C

Equipment: Injection Machine ROMI 450 ton

Concept cars – full PP-Sisal Interior Trim

Hemp Reinforced PP

FMC External Material

- Competitive mechanical and thermal properties
- Heat aging performance proved
- Very competitive price

PP-Hemp: Component Test

- Crash test
 - RHS and LHS offset, 64km/h: PASSED!

- Durability test: successfully completed!
 - Test ran over 65.000 km
- Share of tool with PP-GF component: dimension of component kept under tolerance
- Production trial proved cycle time is the same (potential to further reduction due to lower injection temperature)

Parameters Influencing PP-NF Compound

 Manufacturer and polymer were the process parameters with the most influence to NFC properties

R&A Projects Using Soy in Plastics

R&A Soybean Projects Summary

- Soy Oil in Flexible PU Foam
 - In production
- Soy Fillers in Rigid PU Foam
 - Able to incorporate up to 24% filler, but moisture absorption a concern
- Soy Fillers in Natural Rubber
 - Positive results using up to 30% soy flour
- Soy Fillers in EPDM
 - Obtained promising physical results; collaborating with supplier on parts
- Soy Fillers in Polyolefins
 - New project to use soy fillers in PP, TPO, TPE

Liquid Wood – Project Description

 Improving Quality of Wood-Plastic-Composites (WPC) through Innovative Compounding Technique in a Internal Mixer.
Wasseraufnahme

Liquid Wood Pilot Test – Production of a Ford Interior Trim Part

- Old tool used due to anticipated processing difficulties of the low viscosity
 - Only minor modifications necessary (temperatures, etc.)
 - Complicated shape including weld lines & cutouts possible
 - Draft angles should be adjusted due to low shrinkage, but could also be advantage for tool design

Remaining Challenges

- Optimization of industrial production and cost
- Stable supply
- Color Management
- Simulation input data & models

Ford Motor Company's Commitment

- 1915 (Model T): wheat based glue, soybean wool, soybean plastics
- Henry Ford spent \$1.25 Million from 1932-1933 to research soy crops
- 1940: soybean plastic trunk lid
- 1941 "Annual community festival of Dearborn": Besides soybean plastics: wheat, hemp, flax, ramie & cork

Ford Motor Company's Commitment

"Ford is committed to offering customers affordable, environmentally friendly technologies in vehicles they really want. We are focused on providing solutions that can be used not for hundreds or thousands of cars, but for millions of cars because that is how Ford can truly make a difference."

-Alan Mulally, President & CEO Ford Motor Company

Thank you very much for your attention!

Questions?

