

Bio-based polymers workshop 12th October 2010, Schiphol Airport, Amsterdam

Dr Ivan RODRIGUEZ
L'Oréal, Advanced Research
Chemistry and Performance Material Dpt Director

Polymers in cosmetics

Polymers: The most widely used ingredients in cosmetics

- Rheology modifiers
 - Shampoos, creams, gels, mousses, sticks
- Emulsifiers, dispersing agents
 - Pigment dispersion
- Encapsulation
 - Ingredients delivery and protection
- Film forming
 - Nail varnish, hair styling
- Adhesives
 - Hair sprays

Polymers in cosmetics

Hair setting or nail polish products, where the adhesive's dissipative effects at the interface control its performance

- Gel and cream formulations, where entanglements and disentanglements occur, are the base of understanding their rheological properties
- Colloids and coatings formulations where wetting phenomena play an essential role.

A high portion of the portfolio of l'Oréal's raw materials including internal R&D and external suppliers are plant origin :

in 2008, 40 % of raw materials were sourced from plants

But Why...?

Our Context Solvent borne **Polymers** Silicone-soluble Hydrocarbon-**Polymers** soluble Polymers **Natural Polymers** Reach **Commitment to Bio-based** Sustainable Development **Polymers** Green Chemistry **Eco-toxicity** «E-factor» «Bio-Market» Life Cycle Waterborne Co-existence of the **Polymers**

Co-existence of the diversity...but a new trend anyway...

Our Challenges/Goals

- Safe and Eco-safe Water-based Polymers: Latexes
- Polymers from Renewable Ressources :

 $%C_{Ren} > 50\%$

Water-dispersible

or also...Oil-soluble

Properties: Film-formers, Gels

- Composite Materials : Ex. Natural Fillers
- Green eco-friendly surfactants
- Green Solvents and cosmetic oils

Research themes to reach these goals

- Chemical modifications of polysaccharides
- New green Building Blocks and their polymerisation

- □ Green process: Reactive Extrusion, plant extracts, limitation of the use of solvents
- Efficient catalytic process : Enzymatic synthesis

Biobased Polymers at l'Oréal

Synthetic

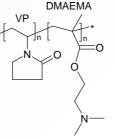
Polymerization **Monomers**

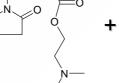
Broad diversity of monomers & Process

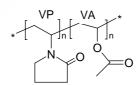
Natural

Polymerization **Extraction** Natural Substrates Green (leaves, trees, Building micro-algae...) **Green Process** blocks Green modification Natural Polymer

Very few commercial building blocks really acceptable from sustainable dvt point of view


Biobased Polymers at l'Oréal


How to make gels "Greener"


Film Forming

Thickener

Crosslinked Acrylate Copolymer

Film Forming + Thickener:

+ Sorbitol + glycerol

Different texture, transparency, hair setting strength, smell

Main interests

Safe and Eco-safe Water-based Polymers
Polymers from Renewable Ressources
Composite Materials
Green eco-friendly surfactants
Green Solvents and cosmetic oils

Research Programs

Chemical modifications of polysaccharides
New green Building Blocks and their polymerisation
Green process
Efficient catalytic process

